BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 49 (6), 1711-1712 (1976)

Viscosity B Coefficients for Di- and Trialkylammonium Chlorides in Aqueous Solutions

Kunio Tamaki, **M**itsuyoshi Kushida, and Yōko Ōhara Department of Chemistry, Yokohama City University, Kanazawa-ku, Yokohama 236 (Received March 11, 1976)

Synopsis. The viscosity *B* coefficients of the Jones-Dole equation for di-*n*-alkylammonium chlorides (methyl to butyl) and tri-*n*-alkylammonium chlorides (methyl to propyl) in water at 25 °C were determined, and the effect of structural changes in the solvent water induced by the alkyl-substituted ammonium ions is discussed.

The behavior of electrolytes with nonpolar groups in water may be interpreted approximately by a balance of two types of interaction; hydrophobic hydration due to the nonpolar parts, and electrostrictive hydration due to the ionic parts.1) In a previous paper,2) the role of the alkyl groups in the coordination of the charge-bearing nitrogen atom in the series of n-alkylammonium salts RNH₃X, di-n-alkylammonium salts R₂NH₂X, tri-n-alkylammonium salts R₃NHX, and tetra-n-alkylammonium salts R₄NX was discussed on the basis of the changes in the heat capacity upon dissolution in water. The study of the viscosity of aqueous electrolyte solutions provides a useful method of obtaining information on ion-solvent interactions.3,4) The viscosity B coefficients for RNH₃X^{1,5)} and R₄NX⁶⁻⁹⁾ are found in the literature. In this paper, we will report our experimental study of the viscosity B coefficients for R₂NH₂Cl (methyl to butyl) and R₃NHCl (methyl to propyl) in aqueous solutions.

Experimental

 R_2NH_2Cl and R_3NHCl salts used in this work were the same samples as those described in a previous paper. 2 The viscosities were measured at $25\pm0.007\,^{\circ}C$ by a method similar to that described in our previous papers. $^{1,10)}$

Results and Discussion

The viscosity of aqueous electrolyte solutions is given by the Jones-Dole equation:¹¹⁾

$$\eta/\eta_0 = 1 + Ac^{1/2} + Bc \tag{1}$$

where η and η_0 are the viscosity of the solution and the solvent respectively; c, the molar concentration; A, the constant arising from the interaction between the ions, and B, the viscosity B coefficient. Equation 1 may be converted to:

$$(\eta/\eta_0 - 1)/c^{1/2} = A + Bc^{1/2}$$
 (2)

By plotting $(\eta/\eta_0-1)/c^{1/2}$ against $c^{1/2}$, as is shown in Fig. 1, the *B* coefficient can be determined from the slope of the straight line. The values of the *B* coefficient so determined are summarized in Table 1.

The *B* value obtained in this procedure is considered to be the sum of the contributions from a cation and an anion. Taking the ionic *B* value, B_{ion} , of Clion to be -0.007 according to the separation basis of Gurney,³⁾ the B_{ion} values of $R_2NH_2^+$ and R_3NH^+ ions

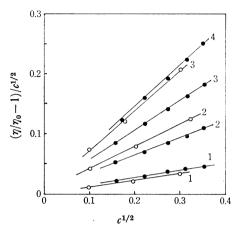


Fig. 1. Plots of $(\eta/\eta_0-1)/c^{1/2}$ against $c^{1/2}$. \bullet R₂NH₂Cl salts, \bigcirc R₃NHCl salts. 1, methyl; 2, ethyl; 3, propyl; 4, butyl.

Table 1. Estimation of the ion-solvent interaction

-	R	B (l/mol)	$B_{ m ion} \ (m l/mol)$	\overline{V}° (cm ³ /mol)	$\overline{V}^{\circ}_{\mathrm{ion}} \ \mathrm{(cm^3/mol)}$	$B_{ m solv} \ m (l/mol)$
R ₂ NH ₂ Cl						
	Me	0.105	0.112	72.5	49.3	-0.011
	Et	0.286	0.293	106.7	83.5	0.084
	Pr	0.490	0.497	138.7	115.5	0.208
	Bu	0.687	0.694	170.7	147.5	0.325
$ m R_3NHCl$						
	Me	0.110	0.117	90.59	67.3	-0.051
	Et	0.378	0.385	138.6	115.4	0.097
	Pr	0.681	0.688	186.8	163.6	0.279

can be obtained; they are listed in Table 1.

The viscosity B coefficient is usually interpreted as consisting of two terms; the first is the effect of the ionic size, $B_{\rm size}$, and the second is the contribution arising from the ion-solvent interaction, $B_{\rm solv}$;⁴)

$$B_{\rm ion} = B_{\rm size} + B_{\rm solv} \tag{3}$$

If we assume that the Einstein equation derived for the case of spherical colloid may be applied approximately to the aqueous electrolyte solutions, $B_{\rm size}$ may be obtained from this equation:

$$B_{\text{size}} = 0.0025 \, \overline{V}^{\circ}_{\text{ion}} \tag{4}$$

where $\overline{V}^{\circ}_{\text{ion}}$ is the ionic partial molal volume expressed in cm³/mol. Thus, B_{solv} can be derived by the use of this equation:⁷⁾

$$B_{\text{solv}} = B_{\text{ion}} - 0.0025 \overline{V}^{\circ}_{\text{ion}}$$
 (5)

The values of the partial molal volume, \overline{V}° , of R₂NH₂Cl and R₃NHCl salts have been reported by Conway and

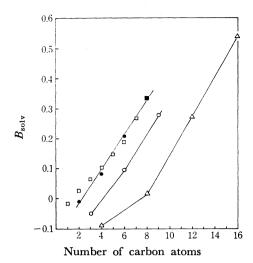


Fig. 2. Plots of $B_{\rm solv}$ against number of carbon atoms in the ions. \square RNH₃+, \bullet R₂NH₂+, \bigcirc R₃NH+, \triangle R₄N+.

his collaborators. $^{12,13)}$ The $\overline{V}^{\circ}_{1\text{on}}$ values of $R_2NH_2^+$ and R_3NH^+ ions may be obtained by subtracting 23.2 cm³/mol, the $\overline{V}^{\circ}_{1\text{on}}$ value of Cl⁻ ion¹⁴⁾, from the \overline{V}° values of R_2NH_2 Cl and R_3HN Cl salts. The B_{solv} values obtained for $R_2NH_2^+$ and R_3NH^+ ions are summarized in Table 1.

As may be seen in Table 1, the $B_{\rm solv}$ values of ${\rm Me_2NH_2^+}$ and ${\rm Me_3NH^+}$ ions are negative; both the methyl salts are, then, to be classified as simple salts. This implies that the interaction of the charge-bearing nitrogen atom with water surpasses the hydrophobic hydration due to methyl groups; thus, the overall behavior of these methyl salts in water is governed by electrostrictive hydration.

Table 1 indicates the positive $B_{\rm solv}$ values for Et₂-NH₂+, Pr₂NH₂+, Bu₂NH₂+, Et₃NH+, and Pr₃NH+ ions; they are all classifiable as the hydrophobic structure-making ions in water.

The $B_{\rm solv}$ values of RNH₃⁺ and R₄N⁺ ions may also be obtained using the viscosity and partial molal volume data in the literature.^{1,5–9,15}) Thus, in the cases of RNH₃⁺, R₂NH₂⁺, R₃NH⁺, and R₄N⁺ series,

the dependence of the $B_{\rm solv}$ values on the total number of carbon atoms in the ions is shown in Fig. 2. It is found that the $B_{\rm solv}$ values for the alkyl-substituted ammonium ions with the same number of carbon atoms will be in this order: RNH₃+ $\stackrel{.}{=}$ R₂NH₂+> R₃NH+>R₄N+. The Behavior of the $B_{\rm solv}$ values obtained in this paper for the alkyl-substituted ammonium ions is consistent with the inclination of the changes in the heat capacity upon dissolution of these salts in water reported in a previous paper.²⁾

References

- 1) K. Tamaki, Y. Ōhara, H. Kurachi, M. Akiyama, and H. Odaki, Bull. Chem. Soc. Jpn., 47, 384 (1974).
- 2) K. Tamaki, S. Yoshikawa, and M. Kushida, *Bull. Chem. Soc. Jpn.*, **48**, 3018 (1975).
- 3) R. W. Gurney, "Ionic Processes in Solution," McGraw-Hill, New York (1953).
- 4) R. H. Stokes and R. Mills, "Viscosity of Electrolytes and Related Properties," Pergamon, Oxford (1965).
- 5) J. E. Desnoyers, M. Arel, and P-A. Leduc, *Can. J. Chem.*, **47**, 547 (1969).
- 6) R. L. Kay, T. Vituccio, C. Zawoyski, and D. F. Evans, J. Phys. Chem., 70, 2336 (1966).
- 7) J. E. Desnoyers and G. Perron, *J. Solution Chem.*, **1**, 199 (1972).
- 8) D. Eagland and G. Pilling, J. Phys. Chem., **76**, 1902 (1972).
- 9) P. K. Mandall, B. K. Seal, and A. S. Basu, Z. Phys. Chem. Neue Folge, **89**, 41 (1974).
- 10) K. Tamaki, Y. Ōhara, and Y. Isomura, Bull. Chem. Soc. Jpn., **46**, 1551 (1973).
- 11) G. Jones and M. Dole, J. Am. Chem. Soc., **51**, 1950 (1929).
- 12) L. H. Laliberté and B. E. Conway, J. Phys. Chem., **74**, 4116 (1970).
- 13) R. E. Verrall and B. E. Conway, J. Phys. Chem. 70, 3961 (1966).
- 14) F. J. Millero, Chem. Rev., 71, 147 (1971).
- 15) F. J. Millero, "Water and Aqueous Solutions, Structure, Thermodynamics, and Transport Processes," ed. by R. A. Horne, Wiley-Interscience, New York, N. Y. (1972), p. 565.